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Project Objectives 

 This program focused on the study and demonstration of a novel idea to use optical biasing for 
multi-color detection using two-terminal monolithically integrated multi-junction photodetectors 
(MJPDs) [1]. 

 Multicolor photodetectors and focal plane arrays (FPAs) covering a very broad spectral range 
from UV to far infrared are highly desirable for not only defense applications but also 
commercial needs [1].  However, even after several decades of persistent efforts by the global 
optoelectronics community, such UV-IR photodetection systems still use many different 
materials that are grown on a diverse array of substrates in order to obtain the high material 
quality necessary for device applications.   

 As a result of the diversity of materials being used, it has been extremely challenging to integrate 
all of them monolithically without sacrificing device performance [1].  It has been a dream of the 
photonics community to achieve integration of all devices and systems on a single substrate. 

 These integrated semiconductor binaries and their alloys have direct band gaps covering the 
entire energy spectrum from far IR (~0 eV) to UV (~3.4eV) [1].  Such a unique material platform 
offers unlimited degrees of freedom for integrating almost any kind of photonic devices (such as 
lasers, photodetectors, and solar cells) and electronic devices onto a single substrate without large 
numbers of misfit dislocations to ensure the best material quality.  This feature is not achievable 
by any other known lattice-matched semiconductors on any available substrates. 

 We envision that a new generation of multicolor photodetectors and FPAs can be monolithically 
integrated on a single chip with superior device characteristics [1]. Such integrated photonic 
devices and systems will not only deliver the long-promised potential of revolutionary new levels 
of performance but will also have additional unprecedented functionalities, far beyond the 
capabilities of conventional photodetectors and FPAs. 

 Figure 1 shows a schematic example of a two terminal (3 detector) multicolor detector under 
optical bias, which allows the optical addressing to function. 
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Figure 1 Schematic of the optically addressed, two-terminal, multicolor photodetector. The detector 
structure consists of multiple photodiodes with different cutoff wavelengths connected in series with 
tunnel diodes between adjacent photodiodes. The LEDs optically bias the inactive photodiodes in the 

detector to enable single color detection. Figure from Ref. [2]. 
 

Results 

 This section outlines some of the key results obtained during this project, including initial 
demonstrations of optical addressing, tunnel junction studies and multicolor device 
characterization. 

Initial Results and Optical Addressing 

 To initially demonstrate this device concept, a commercial InGaP/InGaAs/Ge triple-junction solar 
cell 22 cm2 was used as the multicolor photodetector because the solar cell structure is almost 
identical to the proposed multicolor photodetector design [2]. 

 The “dark” current densities versus voltage (J-V) curves are shown in Figure 2 [2]. The forward 
and reverse bias regions of the individual active photodiodes’ J-Vs are clearly discernable. The 
magnitude of the dark current increases as the photodiode’s band gap decreases, as expected. The 
operating point of the active photodiode on the reverse bias portion of its J-V curve depends on 
the voltage and light bias conditions, which can be selected to minimize the dark current. 
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Figure 2 Dark current densities vs. voltage. The J-Vs were measured with matching optical bias photon 
flux on the inactive photodiodes and no input signal to the active photodiode. The voltage is across the 

entire device, not just the active photodiode. Figure from Ref. [2]. 
 
 

 The responsivity, as shown in Figure 3, of the three photodiodes clearly confirms that optical 
biasing can address onephotodiode at a time in a multicolor detector with only two terminals 
[2].When the InGaAs and Ge photodiodes are optically biased, the entire detector response is that 
of the InGaP photodiode only, with zero response above 650 nm. The In-GaAs photodiode shows 
a response from 650 to 900 nm, while the Ge photodiode responds at greater than 900 nm.The 
crosstalk between the InGaP and InGaAs photodiodes and between the InGaAs and Ge 
photodiodes is a result of (i) luminescence coupling, [3][4](ii) photon flux leakage through the 
InGaP and InGaAs photodiodes, as they may not be optically thick, and (iii) shunts in one or 
more of the photodiodes. [5][6]In both cases, the crosstalk responsivity is less than ten percent of 
the responsivity in the photodiode’s intended response range, and this can be further reduced 
using design modifications. 
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Figure 3 The spectral responsivity curve of each photodiode. The responsivity was measured with 
matching photon flux on the inactive photodiodes. Figure from Ref. [2]. 

 

 The linear dynamic range of the InGaP photodiode covers four orders of magnitude, as shown in 
Figure 4, under two light bias conditions [2]. The detector current increases linearly as the input 
signal increases until the photogenerated current due to the signal is larger than the 
photogenerated current from the light bias. After this point, the detector output saturates due to 
one of the inactive photodiodes limiting the current. The intensity of the biasing LEDs can limit 
the upper end of the dynamic range before the detector itself begins to saturate. This is the case in 
Figure 4, as increasing the light bias by an order of magnitude allows the detector current to 
continue to increase. The lower detection limit is determined mainly by the noise of the active 
photodiode.  
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Figure 4 Linear dynamic range of the InGaP photodiode with matching light bias photon flux on the 
InGaAs and Ge photodiodes. The detector output current saturates after the photogenerated current due to 

the signal photon flux is larger than the photogenerated current from the light bias photon flux. The 
dashed lines are guides for the eye. Figure from Ref. [2]. 

 
 

 
 

Figure 5 LWIR photocurrent vs. NIR CW optical bias is measured at 77 K. NIR to LWIR band switching 
threshold of 100 mW/cm2 optical bias is measured at 77 K. Lower band-switching-threshold is observed 

at lower detector temperatures. Figure from Ref. [7]. 
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 Large-signal NIR peak photocurrent vs. the incident NIR peak power is measured using a 780 nm 
laser diode with 50%duty cycle at 150 Hz (Figure 5) at 68 K [7]. The NIR photocurrent is 
measured with a lock-in amplifier and observed to linearly increase over three orders of 
magnitude until the band-switching threshold of ~3-6 mW/cm2, above which the NIR 
photocurrent signal saturates and stays constant. Above the threshold, the photodetector enters the 
LWIR mode of operation and the photocurrent is determined by the LWIR flux. 

 

 

Figure 6 Large-signal NIR peak photocurrent vs. incident peak power at 68 K on a 150 μm x 150 μm 
sized square pixel. The NIR responsivity is constant until the NIR sub-photodetector turn-off threshold of 

3 mW/cm2. Above the threshold, the photodetector enters the LWIR mode of operation and the LWIR 
QWIP sub-photodetector current limits the photodetector current. Figure from Ref. [7]. 

 

 Large-signal characteristics are measured with a single 780 nm laser diode at 100% modulation 
factor and 50% duty cycle [7]. Small-signal characteristics are also measured with small NIR 
modulated light from a 780 nm LED, on top of the CW optical bias from a 780 nm laser diode. 
Both the large-signal and small-signal characteristics are consistent, which shows the linearity in 
the NIR mode of operation on a wide range of NIR flux. 

 

III-V/II-VI heterostructure tunnel junction and multicolor photodetector results 

 Heterovalent interfaces, such as ZnSe/GaAs, ZnTe/GaSb, and CdTe/InSb, contain rich physics in 
their growth and optical/transport properties. Interest in III-V/II-VI material systems includes 
both the desire to use III-V substrates for II-VI material epitaxial growth, and the possibility of 
developing novel optoelectronic devices utilizing III-V/II-VI heterojunctions such as multi-color 
photodetectors and solar cells [2]. Mixing lattice-matched II-VI and III-V semiconductors could 
be an efficient way to tune the material properties (e.g. band gap) for specific applications. High-
quality monocrystalline CdTe/MgCdTe double heterostructures grown on (001) InSb substrates 
by molecular beam epitaxy (MBE) have recently been demonstrated with record-long minority 
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carrier lifetimes of up to 2.7 µs for various structures [8-9]; close to the best values reported for 
GaAs-based heterostructures. However, limited work on the vertical transport across the 
CdTe/InSb heterovalent interface has been reported. The investigation of interface properties and 
vertical transport across the CdTe/InSb heterovalent interface, which has a small lattice mismatch 
of only 0.03%, is important for future III-V/II-VI quantum well and superlattice structure 
applications.  

 Two samples, an n-CdTe/n-InSb and an n-CdTe/p-InSb heterostructure, both on n-InSb 
substrates, were grown for transport study using a dual-chamber MBE system equipped with a 
III-V and a II-VI growth chamber connected by a UHV transfer chamber. The substrate is doped 
with Te at a concentration of 2×1017 cm-3 while the n-CdTe, n-InSb and p-InSb epilayers are 
doped at concentrations of 1×1017cm-3, 5×1018 cm-3 and 1×1019 cm-3 with In, Te and Be, 
respectively. In was used as the CdTe ohmic metal contact while Ti/Au was deposited on the 
InSb. The results of the current-voltage (I-V) measurements with different device areas show 
ohmic behavior with a small resistivity of <0.1 Ω·cm2. More comprehensive heterovalent 
interface characterization is under-going, including electrochemical capacitance voltage, X-ray 
diffraction, transmission electron microscopy, and Raman scattering. 
 

 
Figure 7 Schematic layer structures of n-CdTe/n-InSb and n-CdTe/p-InSb vertical transport 

samples. The device areas range from 0.4×0.4 mm2 to 5×5 mm2. 

 
Figure 8 Current-voltage characteristics of n-CdTe/n-InSb and n-CdTe/p-InSb vertical transport 

samples show linear behaviors with small resistivity below 0.1 Ω·cm2 indicating negligible 
voltage drop across interfaces. 

 

 With the InSb/CdTe tunnel junction demonstrated, we moved one step forward to make an 
InSb/CdTe optically-addressed visible-and-infrared two-color photodetector (see figure 9). It is 
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comprised of a CdTe nBn sub-photodetector (820 nm band gap), and an InSb PIN sub-
photodetector (7 μm band gap) that is well studied as Reference 10. The nBn detector is a novel 
photodetector structure [11] designed to suppress the dark current without damping the 
photocurrent in the realm of infrared photo detection. The first letter n denotes an n-type contact 
layer, the second letter n denotes an n-type absorber layer, and B denotes a barrier layer, which is 
normally composed of a wide-band-gap material with large conduction-band offset to the 
absorber layer to block the majority electrons but negligible valence-band offset to allow the 
minority (photogenerated) holes from the absorber layer to pass freely. The nBn detector structure 
has never been explored for visible light detection materials to the author’s knowledge, even 
though it has been broadly applied for a variety of infrared detection materials such as InAsSb 
[12], HgCdTe [13], InAs/GaSb superlattice [14], and InAs/InAsSb superlattice [15]. Here, we use 
a 20 nm thick ZnTe as the barrier layer to demonstrate a CdTe nBn photodetector. ZnTe has a 
considerable conduction band offset of  ~ 1 eV to serve as an electron barrier, and a small valence 
band offset of ~ 0.1 eV to almost perfectly align the valance band edge to the CdTe absorber[16]. 
The 20 nm ZnTe is thick enough to suppress electron direct-tunneling current according to our 
calculation, and also, it is thin enough to minimize the lattice-mismatch induced dislocations that 
could propagate into the CdTe absorber and degrade its optical and electrical properties. The 1 
μm CdTe absorber can absorb 99 % of the incident photons with energy greater than its bandgap 
and thus the amount of residue visible light that could be absorbed by the InSb detector is 
minimized. Indium is deposited on the mesa top and annealed at 200 ° C for 1 min to make an 
Ohmic contact to CdTe, and Ti/Pt/Au was deposited on the back of the n-type InSb substrate  to 
make an ohmic contact to InSb. 
 

 
Figure 9 The layer structure of the CdTe/InSb optically-addressed visible-and-infrared two-color 
photodetector.  
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 Stand-alone CdTe nBn photodetector and InSb PIN photodetector were grown, fabricated and 
characterized for reference purpose. Figure 10 shows, the resistance of the (n+)-CdTe/(p+)-InSb 
hetero-structure is indeed much lower than either the CdTe nBn photodetector or the InSb PIN 
photodetector at both room temperature and 78 K, suggesting that the voltage loss at the 
CdTe/InSb interface is negligible in the integrated multi-color photodetector. Even though the 
InSb PIN photodetector suffers from surface leakage current at 77 K, further silicon oxide surface 
passivation can be done to suppress the surface leakage [10] in the future work. 

 
Figure 10 The dark I-V curves for the CdTe/InSb multicolor photodetector, the stand-alone CdTe nBn 
photodetector, the stand-alone InSb PIN photodetector and the InSb/CdTe tunnel junction at room 
temperature and liquid nitrogen cooling temperatures.  
 

 The multi-color photodetector is at CdTe detection mode in default at room temperature without 
any optical addressing bias. This is as the expected because the resistance of the CdTe nBn sub-
photodetector is much greater than that of the InSb PIN sub-photodetector, and the InSb PIN 
infrared sub-photodetector itself has very low responsivity at room temperature. The optical 
addressing is difficult at room temperature: one cannot turn on the InSb sub-detector using an 808 
nm CW laser with a power up to 2 W/cm2. On the other hand, at 77 K which is the practical 
working temperature for the InSb sub-photodetector, the multi-color detector has shown optical 
addressing behavior. One can enhance its infrared response by 30 times under a 3.39 μm light 
source using a 633 nm CW laser as the optical bias with a power of 0.08 W/cm2.  

 
Detailed characterization for the CdTe/ZnTe/CdTe nBn photodetector 
 

 The novel CdTe/ZnTe/CdTe nBn photodetector has shown high gain, non-linearity, and slow 
response at room temperature. Rigorous measurements show that the external quantum efficiency 
(EQE) of the CdTe/ZnTe/CdTe nBn photodetector can be much higher than 100% as under a 
relatively low light power of 10-8 – 10-6 W, seen in Figure 11, indicating a gain effect is present in 
the device. The EQE was determined by measuring the photocurrent under a 633 nm laser light 
confined onto the pixel under test only using an optical fiber. The light power was calibrated 
using a silicon detector with a calibrated EQE spectrum.  
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Figure 11 The CdTe/ZnTe/CdTe nBn photodetector has an external quantum efficiency (EQE) 
much higher than 100 %, with a non-linear photocurrent vs. light power relation which can be 

fitted using a power law of IPhoto = AP0.535. 

 
Figure 12 Uncalibrated Responsivity spectra of the CdTe/ZnTe/CdTe nBn photodetector. The 

nonlinear relation between the input light power and photocurrent must be handled to get a 
smooth responsivity curve.  

 

 The photodetector is nonlinear with a photocurrent vs. light power relation following a power law 
as Figure 11. This nonlinearity must be considered for the responsivity spectrum measurement. 
As Figure 12, the conventional definition Iphoto/P of the responsivity appears to be very spiky as a 
function of wavelength. This is due to the nonlinearity of the photodetector and the peaks in the 
power spectrum of the light source. In comparison, an Iphoto/P

0.44 spectrum appears to be much 
smoother. The nonlinearity of the CdTe nBn photodetector can be summarized using the 
following formula. 
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௣௛௢௧௢ܫ ൌ  ሻܲ଴.ହ                                                      (1)ߣሺܣ

 
where A is a constant that is dependent of the wavelength λ only, P is the light power, and Iphoto is 
photocurrent. This power law suggests the presence of Urbach tail at the band edges according to 
Rose [17], if the Urbach tail states have an exponential distribution in energy such that 
 

௧ܰሺܧ௧ሻ ൌ ݌ݔ݁ܣ ቀെ
|ா೟ିா೎|

௞ భ்
ቁ                                               (2) 

 
Where A is a constant, EC is the conduction band edge, and the temperature, T1, is a formal 
parameter that can be adjusted to make the density of states vary more or less rapidly with energy 
[17]. As the incident light power increases, more and more Urbach tail states fall between the 
electron and hole quasi Fermi levels and become recombination centers. As a consequence, the 
carrier recombination process is enhanced as the light power increases and less portion of the 
photogenerated carriers are extracted. It can be derived that [17] 
 

௣௛௢௧௢ܫ ∝ ܲ భ்/ሺ்ା భ்ሻ                                                   (3) 

 

 The photocurrent of the CdTe nBn photodetector has an exponential decay tail of ~ 3 ms after the 
light source is electrically turned off, suggesting the existence of slow carrier trapping processes 
that can induce photoconductive gain. 

 
Figure 13 The long photocurrent decay tail of ~ 3 ms indicates the existence of slow carrier 

trapping processes which can induce significant photoconductive gain. 
 

 The photoluminescence measurement of CdTe/MgCdTe double-heterostructures with different 
CdTe doping concentrations can shed some light on the device physics. As Figure 14, it is shown 
that undoped CdTe has very little sub-band-gap optical transition; however, heavily doped n-type 
CdTe have significant sub-band-gap optical transition due to the induced Urbach tail states. In our 
CdTe nBn photodetector, the absorber layer is undoped and the top contact layer is heavily doped 
as n-type with a concentration of 1018 cm-3. It is then suggested that the ZnTe barrier layer may 
not block the photogenerated electrons from the top contact layer very well, because under a 
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negative bias on the top, the photodetector has the sub-band-gap photo response signature (Figure 
14) coming from the top contact layer. This was impossible if the ZnTe layer fully blocked the 
electrons according to our numerical simulation. Our simulation has shown that, if the barrier 
layer can fully block the electrons, with a negative bias applied on the top, the photo response 
comes from the absorber exclusively. Meanwhile, if a positive bias is applied on the top, the 
photo response exclusively originates from the top contact layer. Such phenomenon was 
experimentally observed in a bias-addressed two-color pBp infrared photodtector [18]. 

 
Figure 14 The photoluminescence measurement shows that the sub-band-gap photo response of 
the CdTe nBn photodetector is the signature of the top contact layer with heavy n-type doping, 

suggesting that the ZnTe barrier layer cannot fully block the electrons. 
 

 The device physics of the CdTe nBn photodetector can be now preliminarily understood. Firstly, 
the high dark current of 1 A/cm2 under the bias of -0.4 V at room temperature can be attributed to 
electron current because the ZnTe layer cannot fully block the electrons as the designed. 
Secondly, with a poor electron-blocking barrier layer, the nBn photodetector can have significant 
photoconductive gain if the holes are trapped and the electrons go through the device for multiple 
cycles. Lastly, the non-linear relation between the input light power and the photocurrent can be 
attributed to the Urbach tail states in the heavily doped top contact layer according to Rose’s 
theory [17]. 

Summary 

 Individual color detection is realized with appropriate optical biasing [2]. This concept is 
demonstrated experimentally using a three-color photodetector and biasing light emitting 
diodes. The measured linear dynamic range is greater than four orders of magnitude, making 
it a practical device for a broad range of applications. 

 Optical Addressing method shown to work for switching between NIR and LWIR detectors 
[7]. 
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 (n+)-CdTe/(p+)-InSb and (n+)-CdTe/(n+)-InSb hetero-structure measured to be effective 
tunneling junctions, making it possible to achieve a multi-color photodetector compised of a 
CdTe sub-photodetector and an InSb sub-photodetector. 

 A CdTe/InSb multi-color photodetector has been designed, grown, fabricated and 
characterized. Optical addressing have preliminarily realized at the temperature of 77 K. The 
infrared photo responsivity can be enhanced by 30 times using an optical bias of 633 nm CW 
laser with the power of 0.08 W/cm2. 

 A gain greater than unity, a non-linear photocurrent vs. photon power behavior and a slow 
photo response have been observed and confirmed in the CdTe/ZnTe/CdTe nBn 
photodetector. 

 The device physics has been preliminarily clarified for the CdTe/ZnTe/CdTe nBn 
photodetector. 
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